Canonical factorization of Gaussian covariance operators and some of its applications
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 481-490
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper contains a systematic approach to the analysis of Gaussian random elements with values in Banach spaces. This approach is based on the idea of canonical factorization of Gaussian covariance operators.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random elements with values in a Banach space, covariance operators and their canonical factorization, admissible translations, dichotomy of Gaussian distributions.
                    
                  
                
                
                @article{TVP_1993_38_3_a0,
     author = {N. N. Vakhania},
     title = {Canonical factorization of {Gaussian} covariance operators and some of its applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {481--490},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a0/}
}
                      
                      
                    TY - JOUR AU - N. N. Vakhania TI - Canonical factorization of Gaussian covariance operators and some of its applications JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 481 EP - 490 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a0/ LA - ru ID - TVP_1993_38_3_a0 ER -
N. N. Vakhania. Canonical factorization of Gaussian covariance operators and some of its applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 3, pp. 481-490. http://geodesic.mathdoc.fr/item/TVP_1993_38_3_a0/
