A projective limit theorem for probability spaces and applications
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 345-355
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new complex of assumptions giving the existence of the projective limit of a projective system of probability spaces is given. This complex consists of regularity and conditions of almost separability and sequential maximality. The result obtained supplements the corresponding results of Choksi and Mallory and Sion.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
projective system of probability spaces, projective limit, regular conditional probability, almost separable system, sequential maximality.
                    
                  
                
                
                @article{TVP_1993_38_2_a7,
     author = {M. M. Rao and V. V. Sazonov},
     title = {A projective limit theorem for probability spaces and applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {345--355},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a7/}
}
                      
                      
                    TY - JOUR AU - M. M. Rao AU - V. V. Sazonov TI - A projective limit theorem for probability spaces and applications JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 345 EP - 355 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a7/ LA - ru ID - TVP_1993_38_2_a7 ER -
M. M. Rao; V. V. Sazonov. A projective limit theorem for probability spaces and applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 345-355. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a7/
