Optimal stopping rules and maximal inequalities for Bessel processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 288-330
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider, for Bessel processes $X\in\operatorname{Bes}^\alpha(x)$ with arbitrary order (dimension) $\alpha \in \mathbf{R}$, the problem of the optimal stopping (1.4) for which the gain is determined by the value of the maximum of the process $X$ and the cost which is proportional to the duration of the observation time. We give a description of the optimal stopping rule structure (Theorem 1) and the price (Theorem 2). These results are used for the proof of maximal inequalities of the type
$$
\mathbf{E}\max\limits_{r\le\tau}X_r\le\gamma(\alpha)\sqrt {\mathbf{E}\tau},
$$
where $X \in\operatorname{Bes}^\alpha(0)$, $\tau$ is arbitrary stopping time, $\gamma(\alpha)$ is a constant depending on the dimension (order) $\alpha$. It is shown that $\gamma(\alpha)\sim\sqrt\alpha$ at $\alpha\to\infty$.
Keywords:
Bessel processes, optimal stopping rules, maximal inequalities, moving boundary problem for parabolic equations (Stephan problem), local martingales, semimartingales, Dirichlet processes, local time, processes with reflection, Brownian motion with drift and reflection.
@article{TVP_1993_38_2_a5,
author = {L. E. Dubins and L. A. Shepp and A. N. Shiryaev},
title = {Optimal stopping rules and maximal inequalities for {Bessel} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {288--330},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a5/}
}
TY - JOUR AU - L. E. Dubins AU - L. A. Shepp AU - A. N. Shiryaev TI - Optimal stopping rules and maximal inequalities for Bessel processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 288 EP - 330 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a5/ LA - ru ID - TVP_1993_38_2_a5 ER -
L. E. Dubins; L. A. Shepp; A. N. Shiryaev. Optimal stopping rules and maximal inequalities for Bessel processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 288-330. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a5/