The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 273-287
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $h(s)$ be the generating function of the number of direct descendants in a Galton–Watson branching process, $\mu (t)$ the number of particles in the process at time $t$, $\nu$ the total number of particles bornn in the process during its evolution, and let $\tau (t)$ be the distance to the nearest mutual ancestor of all the particles existing at time $t$. Assuming that $$ h'(1)=1,\qquad 0<B=h''(1)<\infty, $$ and the parameters $N$, $t\to\infty$ in such a way that $t({B/N})^{1/2}\to\beta\in(0,\infty)$, we find the limit $$ \lim\mathbf{P}\{t^{-1}\tau(t)\le a\mid\mu(t)>0,\nu=N\}=I_\beta(a),\qquad 0<a<1. $$ The result obtained is used to find the limiting (as $N\to\infty$) distribution of the distance to the root of the minimal subtree containing all the vertices of a given height in the case where the tree is chosen at random and equiprobably either from the set of all planted plane trees with $N$ nonrooted vertices or from the set of all labelled rooted trees with $N$ vertices.
Keywords:
Galton–Watson branching process, limit theorems, distribution distance to the nearest mutual ancestor, planted plane trees, labelled trees.
@article{TVP_1993_38_2_a4,
author = {V. A. Vatutin},
title = {The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {273--287},
year = {1993},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/}
}
TY - JOUR AU - V. A. Vatutin TI - The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 273 EP - 287 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/ LA - ru ID - TVP_1993_38_2_a4 ER -
%0 Journal Article %A V. A. Vatutin %T The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height %J Teoriâ veroâtnostej i ee primeneniâ %D 1993 %P 273-287 %V 38 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/ %G ru %F TVP_1993_38_2_a4
V. A. Vatutin. The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 273-287. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/