The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 273-287
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $h(s)$ be the generating function of the number of direct descendants in a Galton–Watson branching process, $\mu (t)$ the number of particles in the process at time $t$, $\nu$ the total number of particles bornn in the process during its evolution, and let $\tau (t)$ be the distance to the nearest mutual ancestor of all the particles existing at time $t$. Assuming that 
$$ 
h'(1)=1,\qquad 0=h''(1)\infty, 
$$ 
and the parameters $N$, $t\to\infty$ in such a way that $t({B/N})^{1/2}\to\beta\in(0,\infty)$, we find the limit 
$$
\lim\mathbf{P}\{t^{-1}\tau(t)\le a\mid\mu(t)>0,\nu=N\}=I_\beta(a),\qquad 01.
$$
The result obtained is used to find the limiting (as $N\to\infty$) distribution of the distance to the root of the minimal subtree containing all the vertices of a given height in the case where the tree is chosen at random and equiprobably either from the set of all planted plane trees with $N$ nonrooted vertices or from the set of all labelled rooted trees with $N$ vertices.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Galton–Watson branching process, limit theorems, distribution distance to the nearest mutual ancestor, planted plane trees, labelled trees.
                    
                  
                
                
                @article{TVP_1993_38_2_a4,
     author = {V. A. Vatutin},
     title = {The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {273--287},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin TI - The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1993 SP - 273 EP - 287 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/ LA - ru ID - TVP_1993_38_2_a4 ER -
%0 Journal Article %A V. A. Vatutin %T The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height %J Teoriâ veroâtnostej i ee primeneniâ %D 1993 %P 273-287 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/ %G ru %F TVP_1993_38_2_a4
V. A. Vatutin. The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 273-287. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a4/
