Efficient estimation using both direct and indirect observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 233-258

Voir la notice de l'article provenant de la source Math-Net.Ru

The Ibragimov—Khas'minskii model postulates observing $X_1,\ldots,X_m$ independent, identically distributed according to an unknown distribution $G$ and $Y_1,\ldots,Y_n$ independent and identically distributed according to $\int {k(\,\cdot\,,y)}\,dG(y)$, where $k$ is known, for example, $Y$ is obtained from $X$ by convolution with a Gaussian density. We exhibit sieve type estimates of $G$ which are efficient under minimal conditions which include those of Vardi and Zhang (1992) for the special case, $G$ on $[0,\infty]$, $k(x,y)=y^{-1}1(x\le y)$.
Keywords: density estimates, parametric estimation, kernel estimates.
@article{TVP_1993_38_2_a2,
     author = {P. J. Bickel and Y. Ritov},
     title = {Efficient estimation using both direct and indirect observations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {233--258},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a2/}
}
TY  - JOUR
AU  - P. J. Bickel
AU  - Y. Ritov
TI  - Efficient estimation using both direct and indirect observations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 233
EP  - 258
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a2/
LA  - ru
ID  - TVP_1993_38_2_a2
ER  - 
%0 Journal Article
%A P. J. Bickel
%A Y. Ritov
%T Efficient estimation using both direct and indirect observations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 233-258
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a2/
%G ru
%F TVP_1993_38_2_a2
P. J. Bickel; Y. Ritov. Efficient estimation using both direct and indirect observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 233-258. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a2/