On large deviations in the Poisson approximation
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 460-470
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper proves a general lemma comparing the behavior of probabilities of large deviations $\mathbf{P}(X\ge x)$ of a random variable $X$ against the Poisson distribution $1-P(x,\lambda)$ ($\lambda$ is the parameter of the Poisson distribution). When upper bounds are known for the factorial cumulants $\widetilde\Gamma_k (x)$ of $k$th order: $$ |\widetilde\Gamma _k (X)|\le\frac{k!\lambda}{\Delta^{k-1}}\quad\text{for }\forall k\ge2 $$ for some $\Delta>0$, then large deviations may be compared in the interval $1\le x-\lambda<\delta\lambda\Delta$, $0<\delta<1$. For such $x$ $$ \frac{\mathbf{P}(X\ge x)}{1-P(x,\lambda)}=e^{L(x)}\biggl(1+\theta_1\frac{1+\lambda}{x}+\theta_2\frac{(x-\lambda)^{3/2}}{\Delta}\biggr), $$ where $L(x)$ is a power series and $|\theta_i|, $i=1,2$.
Keywords:
large deviations, factorial moments and cumulants, mixed cumulants, higher correlation functions.
Mots-clés : Poisson approximation
Mots-clés : Poisson approximation
@article{TVP_1993_38_2_a16,
author = {V. A. Statulyavichus and A. K. Aleshkyavichene},
title = {On large deviations in the {Poisson} approximation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {460--470},
year = {1993},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a16/}
}
V. A. Statulyavichus; A. K. Aleshkyavichene. On large deviations in the Poisson approximation. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 460-470. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a16/