On a characteristic of the accuracy of estimating a distribution density
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 425-431
Cet article a éte moissonné depuis la source Math-Net.Ru
Within the framework of the scheme of independently observed random elements $X_1,\ldots,X_n$ with densities $p(x;\theta)$, $\theta\in\Theta$, the question is studied as to what extent is the possible asymptotic accuracy of the estimation related to the complex structure of the parameter set $\Theta$.
Keywords:
estimation of a distribution density, asymptotic difficulty of an estimation problem, minimal risk, measure of complexity of the parameter set, Kolmogorov diameters.
@article{TVP_1993_38_2_a11,
author = {I. A. Ibragimov},
title = {On a characteristic of the accuracy of estimating a~distribution density},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {425--431},
year = {1993},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a11/}
}
I. A. Ibragimov. On a characteristic of the accuracy of estimating a distribution density. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 425-431. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a11/