Inequalities for the moments of sums of associated multi-indexed variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 417-425

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact upper bounds are obtained for absolute moments of order $r>2$ for finite sums of associated random variables forming a centered field on $\mathbf{N}^d$ or a countable set $T$. These estimates have the form $O(|V|^\tau)$ where $|V|$ is the number of summands. It is shown how the dependence of the summands and existence of their moments determine $\tau$.
Keywords: association ($FKG$-inequality), random fields, sums of dependent random variables, inequalities for absolute moments of sums.
@article{TVP_1993_38_2_a10,
     author = {A. V. Bulinski},
     title = {Inequalities for the moments of sums of associated multi-indexed variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--425},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a10/}
}
TY  - JOUR
AU  - A. V. Bulinski
TI  - Inequalities for the moments of sums of associated multi-indexed variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1993
SP  - 417
EP  - 425
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a10/
LA  - ru
ID  - TVP_1993_38_2_a10
ER  - 
%0 Journal Article
%A A. V. Bulinski
%T Inequalities for the moments of sums of associated multi-indexed variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1993
%P 417-425
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a10/
%G ru
%F TVP_1993_38_2_a10
A. V. Bulinski. Inequalities for the moments of sums of associated multi-indexed variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 38 (1993) no. 2, pp. 417-425. http://geodesic.mathdoc.fr/item/TVP_1993_38_2_a10/