Sequences of Random Transformations
Teoriâ veroâtnostej i ee primeneniâ, Tome 37 (1992) no. 1, pp. 113-120

Voir la notice de l'article provenant de la source Math-Net.Ru

I will discuss tightness for products of independent indentically distributed (i.i.d.) random matrices. What do possible limit points look like?
@article{TVP_1992_37_1_a16,
     author = {G. H\"ognas},
     title = {Sequences of {Random} {Transformations}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a16/}
}
TY  - JOUR
AU  - G. Högnas
TI  - Sequences of Random Transformations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1992
SP  - 113
EP  - 120
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a16/
LA  - ru
ID  - TVP_1992_37_1_a16
ER  - 
%0 Journal Article
%A G. Högnas
%T Sequences of Random Transformations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1992
%P 113-120
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a16/
%G ru
%F TVP_1992_37_1_a16
G. Högnas. Sequences of Random Transformations. Teoriâ veroâtnostej i ee primeneniâ, Tome 37 (1992) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a16/