Reliability Estimation of a Complex Renewable System with an Unbounded Number of Repair Units
Teoriâ veroâtnostej i ee primeneniâ, Tome 37 (1992) no. 1, pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
In this study an asymptotical analysis of the reliability of a complex renewable system with an unbounded number of repair units is provided. The system state is given through a binary vector $e(t)=[e_1(t),\cdots,e_n (t)]$, $e_i(t)=0(1)$, if at the moment $t$ the $i$th element is failure-free (failed). We assume, that at the state $e$ the $i$th element has failure intensity $\lambda_i (e)$. At the instant of failure of every element the renewal work begins and the renewal time has distribution function $G_i (t)$. Let $E_-$ be the set of failed system states. The goal of this study is the asymptotic estimation of the distribution of the time until the first system failure $\tau=\inf\{t:e(t)\in E_-|e(0)=\bar0\} $.
@article{TVP_1992_37_1_a13,
author = {A. D. Solov'ev and D. G. Konstantinidis},
title = {Reliability {Estimation} of a {Complex} {Renewable} {System} with an {Unbounded} {Number} of {Repair} {Units}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {91--94},
year = {1992},
volume = {37},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a13/}
}
TY - JOUR AU - A. D. Solov'ev AU - D. G. Konstantinidis TI - Reliability Estimation of a Complex Renewable System with an Unbounded Number of Repair Units JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1992 SP - 91 EP - 94 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a13/ LA - ru ID - TVP_1992_37_1_a13 ER -
%0 Journal Article %A A. D. Solov'ev %A D. G. Konstantinidis %T Reliability Estimation of a Complex Renewable System with an Unbounded Number of Repair Units %J Teoriâ veroâtnostej i ee primeneniâ %D 1992 %P 91-94 %V 37 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a13/ %G ru %F TVP_1992_37_1_a13
A. D. Solov'ev; D. G. Konstantinidis. Reliability Estimation of a Complex Renewable System with an Unbounded Number of Repair Units. Teoriâ veroâtnostej i ee primeneniâ, Tome 37 (1992) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/TVP_1992_37_1_a13/