Vectors that are Borel normal on a~manifold in~$R^n$
Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 372-376

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_1991_36_2_a19,
     author = {L. N. Pushkin},
     title = {Vectors that are {Borel} normal on a~manifold in~$R^n$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {372--376},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a19/}
}
TY  - JOUR
AU  - L. N. Pushkin
TI  - Vectors that are Borel normal on a~manifold in~$R^n$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1991
SP  - 372
EP  - 376
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a19/
LA  - ru
ID  - TVP_1991_36_2_a19
ER  - 
%0 Journal Article
%A L. N. Pushkin
%T Vectors that are Borel normal on a~manifold in~$R^n$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1991
%P 372-376
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a19/
%G ru
%F TVP_1991_36_2_a19
L. N. Pushkin. Vectors that are Borel normal on a~manifold in~$R^n$. Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 372-376. http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a19/