A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 368-370

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_1991_36_2_a17,
     author = {S. M. Pozin and L. A. Sakhnovich},
     title = {A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {368--370},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/}
}
TY  - JOUR
AU  - S. M. Pozin
AU  - L. A. Sakhnovich
TI  - A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1991
SP  - 368
EP  - 370
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/
LA  - ru
ID  - TVP_1991_36_2_a17
ER  - 
%0 Journal Article
%A S. M. Pozin
%A L. A. Sakhnovich
%T A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1991
%P 368-370
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/
%G ru
%F TVP_1991_36_2_a17
S. M. Pozin; L. A. Sakhnovich. A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 368-370. http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/