A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 368-370
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TVP_1991_36_2_a17,
author = {S. M. Pozin and L. A. Sakhnovich},
title = {A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {368--370},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/}
}
TY - JOUR AU - S. M. Pozin AU - L. A. Sakhnovich TI - A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1991 SP - 368 EP - 370 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/ LA - ru ID - TVP_1991_36_2_a17 ER -
%0 Journal Article %A S. M. Pozin %A L. A. Sakhnovich %T A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes %J Teoriâ veroâtnostej i ee primeneniâ %D 1991 %P 368-370 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/ %G ru %F TVP_1991_36_2_a17
S. M. Pozin; L. A. Sakhnovich. A~two-sided bound on the lowest eigenvalue of an operator that characterizes stable processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 368-370. http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a17/