An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance
Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 356-361
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TVP_1991_36_2_a14,
author = {A. Yu. Zaitsev},
title = {An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {356--361},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1991 SP - 356 EP - 361 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/ LA - ru ID - TVP_1991_36_2_a14 ER -
%0 Journal Article %A A. Yu. Zaitsev %T An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance %J Teoriâ veroâtnostej i ee primeneniâ %D 1991 %P 356-361 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/ %G ru %F TVP_1991_36_2_a14
A. Yu. Zaitsev. An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance. Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 356-361. http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/