An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance
Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 356-361

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_1991_36_2_a14,
     author = {A. Yu. Zaitsev},
     title = {An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {356--361},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1991
SP  - 356
EP  - 361
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/
LA  - ru
ID  - TVP_1991_36_2_a14
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1991
%P 356-361
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/
%G ru
%F TVP_1991_36_2_a14
A. Yu. Zaitsev. An example of a distribution whose set of $n$-fold convolutions is uniformly separated from the set of infinitely divisible laws in the sense of the variation distance. Teoriâ veroâtnostej i ee primeneniâ, Tome 36 (1991) no. 2, pp. 356-361. http://geodesic.mathdoc.fr/item/TVP_1991_36_2_a14/