Random iterations and Kalman filtering
Teoriâ veroâtnostej i ee primeneniâ, Tome 35 (1990) no. 4, pp. 740-748

Voir la notice de l'article provenant de la source Math-Net.Ru

We show the existence of a law of a sequence of uniform Lipschitz random iterates. The law is investigated and the results are applied to obtain the asymptotic behaviour of the state estimation error in a Kalman filtering operated along a renewal process.
@article{TVP_1990_35_4_a9,
     author = {M.C. Viano},
     title = {Random iterations and {Kalman} filtering},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {740--748},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1990_35_4_a9/}
}
TY  - JOUR
AU  - M.C. Viano
TI  - Random iterations and Kalman filtering
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1990
SP  - 740
EP  - 748
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1990_35_4_a9/
LA  - en
ID  - TVP_1990_35_4_a9
ER  - 
%0 Journal Article
%A M.C. Viano
%T Random iterations and Kalman filtering
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1990
%P 740-748
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1990_35_4_a9/
%G en
%F TVP_1990_35_4_a9
M.C. Viano. Random iterations and Kalman filtering. Teoriâ veroâtnostej i ee primeneniâ, Tome 35 (1990) no. 4, pp. 740-748. http://geodesic.mathdoc.fr/item/TVP_1990_35_4_a9/