An Equation for the Aposteriory Probability of the Existence of > in a~Sequence of Dependent Variables and the Detection of the Moment of Appearence of > that is Optimal in the Shiryayev Sense
Teoriâ veroâtnostej i ee primeneniâ, Tome 34 (1989) no. 4, pp. 799-802
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TVP_1989_34_4_a21,
author = {G. I. Salov},
title = {An {Equation} for the {Aposteriory} {Probability} of the {Existence} of {<<Disorder>>} in {a~Sequence} of {Dependent} {Variables} and the {Detection} of the {Moment} of {Appearence} of {<<Disorder>>} that is {Optimal} in the {Shiryayev} {Sense}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {799--802},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1989_34_4_a21/}
}
TY - JOUR AU - G. I. Salov TI - An Equation for the Aposteriory Probability of the Existence of <> in a~Sequence of Dependent Variables and the Detection of the Moment of Appearence of <> that is Optimal in the Shiryayev Sense JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1989 SP - 799 EP - 802 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1989_34_4_a21/ LA - ru ID - TVP_1989_34_4_a21 ER -
%0 Journal Article %A G. I. Salov %T An Equation for the Aposteriory Probability of the Existence of <> in a~Sequence of Dependent Variables and the Detection of the Moment of Appearence of <> that is Optimal in the Shiryayev Sense %J Teoriâ veroâtnostej i ee primeneniâ %D 1989 %P 799-802 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1989_34_4_a21/ %G ru %F TVP_1989_34_4_a21
G. I. Salov. An Equation for the Aposteriory Probability of the Existence of <> in a~Sequence of Dependent Variables and the Detection of the Moment of Appearence of < > that is Optimal in the Shiryayev Sense. Teoriâ veroâtnostej i ee primeneniâ, Tome 34 (1989) no. 4, pp. 799-802. http://geodesic.mathdoc.fr/item/TVP_1989_34_4_a21/