Estimates of the Levi–Prohorov distance in the multivariate central limit theorem for random vectors with finite exponential moments
Teoriâ veroâtnostej i ee primeneniâ, Tome 31 (1986) no. 2, pp. 246-265
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TVP_1986_31_2_a1,
author = {A. Yu. Zaitsev},
title = {Estimates of the {Levi{\textendash}Prohorov} distance in the multivariate central limit theorem for random vectors with finite exponential moments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {246--265},
year = {1986},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1986_31_2_a1/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - Estimates of the Levi–Prohorov distance in the multivariate central limit theorem for random vectors with finite exponential moments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1986 SP - 246 EP - 265 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1986_31_2_a1/ LA - ru ID - TVP_1986_31_2_a1 ER -
%0 Journal Article %A A. Yu. Zaitsev %T Estimates of the Levi–Prohorov distance in the multivariate central limit theorem for random vectors with finite exponential moments %J Teoriâ veroâtnostej i ee primeneniâ %D 1986 %P 246-265 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_1986_31_2_a1/ %G ru %F TVP_1986_31_2_a1
A. Yu. Zaitsev. Estimates of the Levi–Prohorov distance in the multivariate central limit theorem for random vectors with finite exponential moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 31 (1986) no. 2, pp. 246-265. http://geodesic.mathdoc.fr/item/TVP_1986_31_2_a1/