Estimates of distances between sums of independent random elements in Banach spaces
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 49-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Various metrics on the set of random elements in Banach space are treated. Estimates of closeness in these metrics of sums of independent random elements are obtained. Using these estimates we obtain the unimprovable rate of convergence in the central limit theorem for Banach space valued random elements in the Prochorov metric.
			
            
            
            
          
        
      @article{TVP_1984_29_1_a4,
     author = {V. Bentkus and A. Ra\v{c}kauskas},
     title = {Estimates of distances between sums of independent random elements in {Banach} spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a4/}
}
                      
                      
                    TY - JOUR AU - V. Bentkus AU - A. Račkauskas TI - Estimates of distances between sums of independent random elements in Banach spaces JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1984 SP - 49 EP - 64 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a4/ LA - ru ID - TVP_1984_29_1_a4 ER -
V. Bentkus; A. Račkauskas. Estimates of distances between sums of independent random elements in Banach spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a4/
