The theorem on deviation of empirical measure and its applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 159-164

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we obtain the moderate deviation theorems for the empirical measures in one- and multi-dimensional cases. The results are used in the construction of the density estimates having the best rates of convergence in a uniform metric.
@article{TVP_1984_29_1_a20,
     author = {V. D. Konakov},
     title = {The theorem on deviation of empirical measure and its applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a20/}
}
TY  - JOUR
AU  - V. D. Konakov
TI  - The theorem on deviation of empirical measure and its applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1984
SP  - 159
EP  - 164
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a20/
LA  - ru
ID  - TVP_1984_29_1_a20
ER  - 
%0 Journal Article
%A V. D. Konakov
%T The theorem on deviation of empirical measure and its applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1984
%P 159-164
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a20/
%G ru
%F TVP_1984_29_1_a20
V. D. Konakov. The theorem on deviation of empirical measure and its applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 159-164. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a20/