On the asymptotic behaviour of the prediction error in the singular case
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 147-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{X_j\}$ be a singular stationary in a wide sense stochastic process with the spectral
density function $f(\lambda)$. Denote by $\sigma_n^2$ the mean square prediction error for the prediction
of $X_0$ by linear forms depending on $X_{-1}, X_{-2},\dots X_{-n}$. The rate of convergence $\delta_n=\sigma_n^2-\sigma_\infty^2\downarrow 0$, $n\uparrow\infty$, is investigated.
@article{TVP_1984_29_1_a17,
author = {N. {\CYRM}. {\CYRV}{\cyra}b{\cyra}y{\cyra}n},
title = {On the asymptotic behaviour of the prediction error in the singular case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {147--150},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/}
}
N. М. Ваbаyаn. On the asymptotic behaviour of the prediction error in the singular case. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/