On the asymptotic behaviour of the prediction error in the singular case
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 147-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_j\}$ be a singular stationary in a wide sense stochastic process with the spectral density function $f(\lambda)$. Denote by $\sigma_n^2$ the mean square prediction error for the prediction of $X_0$ by linear forms depending on $X_{-1}, X_{-2},\dots X_{-n}$. The rate of convergence $\delta_n=\sigma_n^2-\sigma_\infty^2\downarrow 0$, $n\uparrow\infty$, is investigated.
@article{TVP_1984_29_1_a17,
     author = {N. {\CYRM}. {\CYRV}{\cyra}b{\cyra}y{\cyra}n},
     title = {On the asymptotic behaviour of the prediction error in the singular case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {147--150},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/}
}
TY  - JOUR
AU  - N. М. Ваbаyаn
TI  - On the asymptotic behaviour of the prediction error in the singular case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1984
SP  - 147
EP  - 150
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/
LA  - ru
ID  - TVP_1984_29_1_a17
ER  - 
%0 Journal Article
%A N. М. Ваbаyаn
%T On the asymptotic behaviour of the prediction error in the singular case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1984
%P 147-150
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/
%G ru
%F TVP_1984_29_1_a17
N. М. Ваbаyаn. On the asymptotic behaviour of the prediction error in the singular case. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 147-150. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a17/