Random minimal trees
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the length $l_n$ of minimal tree (the shortest connected net work) in a complete graph with $n$ vertices such that the lengths of its edges are independent identically distributed positive random variables. Under mild conditions on the distribution of the length of the edge the order of growth of $\mathbf Ml_n$ as $n\to\infty$ is found.
@article{TVP_1984_29_1_a15,
     author = {E. A. Timofeev},
     title = {Random minimal trees},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Random minimal trees
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1984
SP  - 134
EP  - 141
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/
LA  - ru
ID  - TVP_1984_29_1_a15
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Random minimal trees
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1984
%P 134-141
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/
%G ru
%F TVP_1984_29_1_a15
E. A. Timofeev. Random minimal trees. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/