Random minimal trees
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the length $l_n$ of minimal tree (the shortest connected net work) in a complete graph with $n$ vertices such that the lengths of its edges are independent identically distributed positive random variables. Under mild conditions on the distribution of the length of the edge the order of growth of $\mathbf Ml_n$ as $n\to\infty$ is found.
@article{TVP_1984_29_1_a15,
author = {E. A. Timofeev},
title = {Random minimal trees},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {134--141},
year = {1984},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/}
}
E. A. Timofeev. Random minimal trees. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/