Random minimal trees
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the length $l_n$ of minimal tree (the shortest connected net work) in a complete
graph with $n$ vertices such that the lengths of its edges are independent identically
distributed positive random variables. Under mild conditions on the distribution of the
length of the edge the order of growth of $\mathbf Ml_n$ as $n\to\infty$ is found.
			
            
            
            
          
        
      @article{TVP_1984_29_1_a15,
     author = {E. A. Timofeev},
     title = {Random minimal trees},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/}
}
                      
                      
                    E. A. Timofeev. Random minimal trees. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 134-141. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a15/
