On the existence of a~strong solution of an Ito stochastic differential equation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 120-123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the scalar stochastic differential equation
$$
x_t=x_0+\int_0^t A(s,x_s)\,ds+\int_0^t B(s,x_s)\,dw_s,\qquad 0\le t\le T,
$$
has at least one strong solution under the following conditions:
a) scalar functions $A(t,x)$ and $B(t,x)$ are continuous in both $t$, $x$ for $0\le t\le T$,
$-\infty$;
b) $B(t,x)$  satisfies a local Lipschitz conditions in $x$;
c) $|A(t,x)|+ |B(t,x)|\le L(1+|x|)$ for some constant $L$ and all $t$, $x$;
d) $\mathbf Mx_0^2\infty$.
			
            
            
            
          
        
      @article{TVP_1984_29_1_a11,
     author = {I. V. Fedorenko},
     title = {On the existence of a~strong solution of an {Ito} stochastic differential equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {120--123},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/}
}
                      
                      
                    TY - JOUR AU - I. V. Fedorenko TI - On the existence of a~strong solution of an Ito stochastic differential equation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1984 SP - 120 EP - 123 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/ LA - ru ID - TVP_1984_29_1_a11 ER -
I. V. Fedorenko. On the existence of a~strong solution of an Ito stochastic differential equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 120-123. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/
