On the existence of a~strong solution of an Ito stochastic differential equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 120-123

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the scalar stochastic differential equation $$ x_t=x_0+\int_0^t A(s,x_s)\,ds+\int_0^t B(s,x_s)\,dw_s,\qquad 0\le t\le T, $$ has at least one strong solution under the following conditions: a) scalar functions $A(t,x)$ and $B(t,x)$ are continuous in both $t$, $x$ for $0\le t\le T$, $-\infty$; b) $B(t,x)$ satisfies a local Lipschitz conditions in $x$; c) $|A(t,x)|+ |B(t,x)|\le L(1+|x|)$ for some constant $L$ and all $t$, $x$; d) $\mathbf Mx_0^2\infty$.
@article{TVP_1984_29_1_a11,
     author = {I. V. Fedorenko},
     title = {On the existence of a~strong solution of an {Ito} stochastic differential equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {120--123},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/}
}
TY  - JOUR
AU  - I. V. Fedorenko
TI  - On the existence of a~strong solution of an Ito stochastic differential equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1984
SP  - 120
EP  - 123
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/
LA  - ru
ID  - TVP_1984_29_1_a11
ER  - 
%0 Journal Article
%A I. V. Fedorenko
%T On the existence of a~strong solution of an Ito stochastic differential equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1984
%P 120-123
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/
%G ru
%F TVP_1984_29_1_a11
I. V. Fedorenko. On the existence of a~strong solution of an Ito stochastic differential equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 120-123. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a11/