On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 19-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose we observe a random process $X_ \varepsilon(t)$, $0\le t\le 1$ satisfying the equation \begin{equation} dX_\varepsilon(t)=s(t)\,dt +\varepsilon\,dw(t) \end{equation} where $w$ is the standard Wiener process and the unknown function $s$ is assumed to belong to some symmetric closed convex subset $\Sigma$ of the space $L_2(0,1)$. Let $L$ be a linear functional defined on $\Sigma$. We consider the problem of estimation of the value $L(s)$ of $L$ at a point $s$ when $X_\varepsilon(t)$, $0\le t\le 1$ is observed. Denote by $\mathscr M$ the set of all linear estimates of $L(s)$ i. e. estimates of the form $\displaystyle\int_0^1m(t)\,dX_\varepsilon(t)$. We proved that 1) $\displaystyle\inf_{\widehat L\in\mathscr M}\sup_{s\in\Sigma}\mathbf E_s(L(s)-\widehat L)^2 =\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)} {\varepsilon^2+\|s\|^2}$. 2) If $\displaystyle\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)}{\varepsilon^2+\|s\|^2} =\varepsilon^2\frac{L^2(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ then $\displaystyle\int_0^1 m_\varepsilon(t)\,dX_\varepsilon(t)$, with $\displaystyle m_\varepsilon= s_ \varepsilon\frac{L(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ is a minimax linear estimator. Several examples are considered.
@article{TVP_1984_29_1_a1,
     author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
     title = {On the nonparametric estimation of a~value of a~linear functional in the {Gaussian} white noise},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - R. Z. Has'minskiǐ
TI  - On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1984
SP  - 19
EP  - 32
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/
LA  - ru
ID  - TVP_1984_29_1_a1
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A R. Z. Has'minskiǐ
%T On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1984
%P 19-32
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/
%G ru
%F TVP_1984_29_1_a1
I. A. Ibragimov; R. Z. Has'minskiǐ. On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/