On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 19-32
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose we observe a random process $X_ \varepsilon(t)$, $0\le t\le 1$ satisfying the equation
\begin{equation}
dX_\varepsilon(t)=s(t)\,dt +\varepsilon\,dw(t)
\end{equation}
where $w$ is the standard Wiener process and the unknown function $s$ is assumed to belong to some symmetric closed convex subset $\Sigma$ of the space $L_2(0,1)$. Let $L$ be a linear functional defined on $\Sigma$. We consider the problem of estimation of the value $L(s)$ of $L$ at a point $s$ when $X_\varepsilon(t)$, $0\le t\le 1$ is observed.
Denote by $\mathscr M$ the set of all linear estimates of $L(s)$ i. e. estimates of the form
$\displaystyle\int_0^1m(t)\,dX_\varepsilon(t)$. We proved that
1) $\displaystyle\inf_{\widehat L\in\mathscr M}\sup_{s\in\Sigma}\mathbf E_s(L(s)-\widehat L)^2
=\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)} {\varepsilon^2+\|s\|^2}$.
2) If $\displaystyle\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)}{\varepsilon^2+\|s\|^2}
=\varepsilon^2\frac{L^2(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$
then $\displaystyle\int_0^1 m_\varepsilon(t)\,dX_\varepsilon(t)$, with
$\displaystyle m_\varepsilon= s_ \varepsilon\frac{L(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ is a minimax linear estimator.
Several examples are considered.
@article{TVP_1984_29_1_a1,
author = {I. A. Ibragimov and R. Z. Has'minskiǐ},
title = {On the nonparametric estimation of a~value of a~linear functional in the {Gaussian} white noise},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {19--32},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/}
}
TY - JOUR AU - I. A. Ibragimov AU - R. Z. Has'minskiǐ TI - On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1984 SP - 19 EP - 32 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/ LA - ru ID - TVP_1984_29_1_a1 ER -
%0 Journal Article %A I. A. Ibragimov %A R. Z. Has'minskiǐ %T On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise %J Teoriâ veroâtnostej i ee primeneniâ %D 1984 %P 19-32 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/ %G ru %F TVP_1984_29_1_a1
I. A. Ibragimov; R. Z. Has'minskiǐ. On the nonparametric estimation of a~value of a~linear functional in the Gaussian white noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a1/