Filtering, smoothing and prediction of degenerate diffusion processes. Backward equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 725-737

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z(t)=(X(t),Y(t))$ be a multidimensional degenerate Markov diffusion process and $f$ be a real function such that $\mathbf Mf^2(X(t))\infty$. Equations for $$ \mathbf M_{z,3}[f(X(t))\mid Y(r),\,r\in[s,\tau]] $$ with respect to $z$, $s$($t$, $x$ are fixed) are presented. We apply these equations to the problem of backward smoothing of $X$.
@article{TVP_1983_28_4_a9,
     author = {B. L. Rozovskiǐ},
     title = {Filtering, smoothing and prediction of degenerate diffusion processes. {Backward} equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {725--737},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a9/}
}
TY  - JOUR
AU  - B. L. Rozovskiǐ
TI  - Filtering, smoothing and prediction of degenerate diffusion processes. Backward equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 725
EP  - 737
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a9/
LA  - ru
ID  - TVP_1983_28_4_a9
ER  - 
%0 Journal Article
%A B. L. Rozovskiǐ
%T Filtering, smoothing and prediction of degenerate diffusion processes. Backward equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 725-737
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a9/
%G ru
%F TVP_1983_28_4_a9
B. L. Rozovskiǐ. Filtering, smoothing and prediction of degenerate diffusion processes. Backward equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 725-737. http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a9/