Representation of a semi-Marcov process as a~time changed Markov process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 653-667
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(P_x)$ be a $\lambda$-continuous and $\lambda$-regular semi-Markov process on a complete separable
locally compact metric space $X$ and let $A_\lambda=A_0+A_\lambda 1\cdot I$ be the $\lambda$-characteristical operator of the process. If $\lambda R_\lambda\varphi\to\varphi$ ($\lambda\to\infty$) uniformly on $X$ where $\varphi\in C_0$ and $R_\lambda$ is the resolvent operator of the process and if $A_\lambda 1$ is continuous negative function on $X$, $A_{0+}1=0$, $A_\lambda 1\to -\infty$ ($\lambda\to\infty$) then for all $\lambda_0>0$ there exists a Markov process which differs from $(P_x)$ by random change of time only. The operator $\bar A=-(\lambda_0/A_{\lambda_0})$ is an infinitesimal operator of the Markov process and 
$$
a_t(\lambda)=\lambda_0\int_0^t\frac{A_{\lambda}1}{A_{\lambda_0}1}\circ\pi_s\,ds\qquad(\lambda>0)
$$
($\pi_s(\xi)=\xi(s)$, $\xi$ is a trajectory of the process) is a Laplace family of additive functionals which determines the random change of time.
			
            
            
            
          
        
      @article{TVP_1983_28_4_a3,
     author = {B. P. Harlamov},
     title = {Representation of a {semi-Marcov} process as a~time changed {Markov} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {653--667},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a3/}
}
                      
                      
                    B. P. Harlamov. Representation of a semi-Marcov process as a~time changed Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 653-667. http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a3/
