Asymptotically optimal Bayesian tests for composite hypotheses
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 738-757
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider two asymptotical ($\varepsilon\to 0$) problems of testing hypotheses $H_{0,\varepsilon}=\{P_{\varepsilon,\theta},\,\theta\in\Theta_0\}$ against $H_\varepsilon=\{P_{\varepsilon,\theta},\,\theta\in\Theta\diagdown\Theta_0\}$ with $\Theta_0\subset E^m$ being the subset of the parameter space $\Theta\subset E^n$, $0\le m$. Under sufficiently general assumptions about the families $P_{\varepsilon,\theta}$ and the densities $\pi_\varepsilon$ and $\pi_{\varepsilon,0}$ on $\Theta\diagdown\Theta_0$ and $\Theta_0$ we construct asymptotically optimal famalies of Bayesian tests and investigate the asymptotics of probabilities of errors.
			
            
            
            
          
        
      @article{TVP_1983_28_4_a10,
     author = {Yu. I. Ingster},
     title = {Asymptotically optimal {Bayesian} tests for composite hypotheses},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {738--757},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a10/}
}
                      
                      
                    Yu. I. Ingster. Asymptotically optimal Bayesian tests for composite hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 738-757. http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a10/
