On asymmetric large deviations problem in the case of the stable limit law
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 637-645

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_j$ be i. i. d. random variables such that for $x\ge x_0$ $$ \mathbf P\{\xi_1>x\}=x^{-\alpha}l(x),\quad\mathbf P\{\xi_1-x\}=x^{-\beta}m(x), $$ where $0\alpha1$, $\beta>\alpha$ and the functions $l(x)$ and $m(x)$ vary slowly as $x\to\infty$. We study the asymptotic behaviour of $$ \mathbf P\{\xi_1+\dots+\xi_n\}\quad\text{for}\ x=0\ (\inf\{y:\ ny^{-\alpha}l(y)\le 1\}). $$
@article{TVP_1983_28_4_a1,
     author = {A. V. Nagaev},
     title = {On asymmetric large deviations problem in the case of the stable limit law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {637--645},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a1/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - On asymmetric large deviations problem in the case of the stable limit law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 637
EP  - 645
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a1/
LA  - ru
ID  - TVP_1983_28_4_a1
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T On asymmetric large deviations problem in the case of the stable limit law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 637-645
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a1/
%G ru
%F TVP_1983_28_4_a1
A. V. Nagaev. On asymmetric large deviations problem in the case of the stable limit law. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 4, pp. 637-645. http://geodesic.mathdoc.fr/item/TVP_1983_28_4_a1/