On the sequential hypotheses testing for signals in white Gaussian noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 544-554
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of the sequential testing of hypotheses $H_i$, $i=1,\dots,N$, where hypotheses $H_i$ are described by the observed process (1.1), is considered. Let the assumption (1.3) be fulfilled and let $\pi_i(t)$ be defined by the formula (2.3), where $P_i(\,\cdot\,)$ is the measure corresponding to the observed process (1.1). It is proved that the decision rule (2.4) guarantees the asymptotically minimum expectation of time $\tau_\alpha^*$ of making the decision, if the probability of error $\alpha$ tends to zero. It is proved also that this optimal expectation of $\tau_\alpha^*$ satisfies the equation (2.6). It is found that the asymptotically optimal decision rule supplies the gain approximately in $4^\lambda$ times in comparison with the best nonsequential decision rule if $\alpha\ll 1$.
@article{TVP_1983_28_3_a8,
author = {G. K. Golubev and R. Z. Has'minskiǐ},
title = {On the sequential hypotheses testing for signals in white {Gaussian} noise},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {544--554},
year = {1983},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a8/}
}
TY - JOUR AU - G. K. Golubev AU - R. Z. Has'minskiǐ TI - On the sequential hypotheses testing for signals in white Gaussian noise JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 544 EP - 554 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a8/ LA - ru ID - TVP_1983_28_3_a8 ER -
G. K. Golubev; R. Z. Has'minskiǐ. On the sequential hypotheses testing for signals in white Gaussian noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 544-554. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a8/