On a probabilistic characterization of some classes of locally convex spaces
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 521-532
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that for a wide class of locally convex spaces the invertions of well-known theorems proved by R. A. Minlos and V. V. Sazonov are valid. The Muštari's criterion of the existence of necessary and sufficient (in the sence of A. M. Veršik and V. N. Sudakov) topology in a Banach space is generalized also.
			
            
            
            
          
        
      @article{TVP_1983_28_3_a6,
     author = {Yu. N. Vladimirskiǐ},
     title = {On a probabilistic characterization of some classes of locally convex spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {521--532},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a6/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Vladimirskiǐ TI - On a probabilistic characterization of some classes of locally convex spaces JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 521 EP - 532 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a6/ LA - ru ID - TVP_1983_28_3_a6 ER -
Yu. N. Vladimirskiǐ. On a probabilistic characterization of some classes of locally convex spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 521-532. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a6/
