Stationary local additive functionals on Gaussian random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 489-503
Cet article a éte moissonné depuis la source Math-Net.Ru
We continue the investigations of the paper [1] and describe explicitly the stationary local additive functionals on Gaussian random fields $\zeta=\{\zeta(\varphi),\,\varphi\in\mathfrak Y(R^\nu)\}$ in terms of their representation by means of multiple stochastic Wiener–Ito integrals.
@article{TVP_1983_28_3_a4,
author = {R. L. Dobru\v{s}in and M. Ya. Kelbert},
title = {Stationary local additive functionals on {Gaussian} random fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {489--503},
year = {1983},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a4/}
}
R. L. Dobrušin; M. Ya. Kelbert. Stationary local additive functionals on Gaussian random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 489-503. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a4/