Stationary local additive functionals on Gaussian random fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 489-503
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We continue the investigations of the paper [1] and describe explicitly the stationary local additive functionals on Gaussian random fields $\zeta=\{\zeta(\varphi),\,\varphi\in\mathfrak Y(R^\nu)\}$ in terms of their representation by means of multiple stochastic Wiener–Ito integrals.
			
            
            
            
          
        
      @article{TVP_1983_28_3_a4,
     author = {R. L. Dobru\v{s}in and M. Ya. Kelbert},
     title = {Stationary local additive functionals on {Gaussian} random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {489--503},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a4/}
}
                      
                      
                    TY - JOUR AU - R. L. Dobrušin AU - M. Ya. Kelbert TI - Stationary local additive functionals on Gaussian random fields JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 489 EP - 503 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a4/ LA - ru ID - TVP_1983_28_3_a4 ER -
R. L. Dobrušin; M. Ya. Kelbert. Stationary local additive functionals on Gaussian random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 489-503. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a4/
