Lebesgue's expansion for spherically invariant measures
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 575-578
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H$ be a real complete separable Hilbert space, $\mathscr H$ be the Borel $\sigma$-algebra on $H$, $\mathscr P_S$ be a family of probability measureson $\{H,\mathscr H\}$. Let the characteristic functional of every measure belonging to $\mathscr P_S$ may be represented in the form
$$
\chi(v)=\int_0^\infty\exp\Bigl\{j(b,v)-\frac x2(Kv,v)\Bigr\}\nu(dx),
$$
where $b\in H$, $(Kv,v)>0$ for every $v\in H$, $\nu$ is a probability measure on $(0,\infty)$, $\displaystyle\int_0^\infty x\nu(dx)\infty$. In the paper the Lebesgue's expansion for the pair of measures $\mathbf P_1$, $\mathbf P\in\mathscr P_S$ is derived.
			
            
            
            
          
        
      @article{TVP_1983_28_3_a13,
     author = {I. V. Kozin},
     title = {Lebesgue's expansion for spherically invariant measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {575--578},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a13/}
}
                      
                      
                    I. V. Kozin. Lebesgue's expansion for spherically invariant measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 575-578. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a13/
