Lebesgue's expansion for spherically invariant measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 575-578
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be a real complete separable Hilbert space, $\mathscr H$ be the Borel $\sigma$-algebra on $H$, $\mathscr P_S$ be a family of probability measureson $\{H,\mathscr H\}$. Let the characteristic functional of every measure belonging to $\mathscr P_S$ may be represented in the form $$ \chi(v)=\int_0^\infty\exp\Bigl\{j(b,v)-\frac x2(Kv,v)\Bigr\}\nu(dx), $$ where $b\in H$, $(Kv,v)>0$ for every $v\in H$, $\nu$ is a probability measure on $(0,\infty)$, $\displaystyle\int_0^\infty x\nu(dx)<\infty$. In the paper the Lebesgue's expansion for the pair of measures $\mathbf P_1$, $\mathbf P\in\mathscr P_S$ is derived.
@article{TVP_1983_28_3_a13,
author = {I. V. Kozin},
title = {Lebesgue's expansion for spherically invariant measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {575--578},
year = {1983},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a13/}
}
I. V. Kozin. Lebesgue's expansion for spherically invariant measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 575-578. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a13/