Uniform exponential convergence of Markov processes with respect to metrics corresponding to the weak topology
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 570-571
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For homogeneous Markov processes we give sufficient conditions for the exponential convergence of one-dimensional distributions with respect to the metrics corresponding to the weak topology. This conditions are formulated in terms of transitional operators.
			
            
            
            
          
        
      @article{TVP_1983_28_3_a11,
     author = {E. I. Gordienko},
     title = {Uniform exponential convergence of {Markov} processes with respect to metrics corresponding to the weak topology},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {570--571},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a11/}
}
                      
                      
                    TY - JOUR AU - E. I. Gordienko TI - Uniform exponential convergence of Markov processes with respect to metrics corresponding to the weak topology JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 570 EP - 571 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a11/ LA - ru ID - TVP_1983_28_3_a11 ER -
%0 Journal Article %A E. I. Gordienko %T Uniform exponential convergence of Markov processes with respect to metrics corresponding to the weak topology %J Teoriâ veroâtnostej i ee primeneniâ %D 1983 %P 570-571 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a11/ %G ru %F TVP_1983_28_3_a11
E. I. Gordienko. Uniform exponential convergence of Markov processes with respect to metrics corresponding to the weak topology. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 570-571. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a11/
