A~lower bound for the convergence rate in the central limit theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 565-569
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For every sequence of nonnegative numbers $\varphi(n)\to 0$, $n\to\infty$ there exists a sequence of independent identically distributed random variables $X_1,X_2,\dots$ such that $\mathbf EX_1=0$, $\mathbf DX_1=1$ and for $n\ge n1$
$$
\sup_x|\mathbf P\{n^{-1/2}(X_1+\dots+X_n)\}-\Phi(x)|\ge\varphi(n).
$$
The distribution of $X_1$ has the form
$$
\mathbf P\{X_1\}=\sum_{k=1}^\infty\lambda_k\Phi(x/\sigma_k);
$$
$\lambda_k$, $\sigma_k$ and $n_1$ are explicit functions of $\{\varphi(n)\}_{n=1}^\infty$.
			
            
            
            
          
        
      @article{TVP_1983_28_3_a10,
     author = {V. K. Matskyavichyus},
     title = {A~lower bound for the convergence rate in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--569},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a10/}
}
                      
                      
                    V. K. Matskyavichyus. A~lower bound for the convergence rate in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 3, pp. 565-569. http://geodesic.mathdoc.fr/item/TVP_1983_28_3_a10/
