On stably weak convergence of semimartingales and point processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 320-332
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{X_n,\,n=1,2,\dots\}$ be a sequence of random elements defined on the probability space $(\Omega,\mathscr F,\mathbf P)$ and taking values in the separable metric space $\mathfrak X$. Let $\mathscr G$ be a $\sigma$-subalgebra of $\mathscr F$. We find general conditions for the sequence $\{X_n,\,n=1,2,\dots\}$ to converge $\mathscr G$-stably; weakly, i. e. for the sequence $\{\mathbf E[\chi_Af(X_n)],\,n=1,2,\dots\}$ to converge for each $A\in\mathscr G$ and for each continuous bounded function $f$ on $\mathfrak X$. The cases of $\mathscr G$-stably weak convergence of semimartingales and point processes are investigated in detail.
@article{TVP_1983_28_2_a6,
author = {B. I. Grigelionis and R. A. Mikulevi\v{c}ius},
title = {On stably weak convergence of semimartingales and point processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {320--332},
year = {1983},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/}
}
TY - JOUR AU - B. I. Grigelionis AU - R. A. Mikulevičius TI - On stably weak convergence of semimartingales and point processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 320 EP - 332 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/ LA - ru ID - TVP_1983_28_2_a6 ER -
B. I. Grigelionis; R. A. Mikulevičius. On stably weak convergence of semimartingales and point processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 320-332. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/