On stably weak convergence of semimartingales and point processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 320-332

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{X_n,\,n=1,2,\dots\}$ be a sequence of random elements defined on the probability space $(\Omega,\mathscr F,\mathbf P)$ and taking values in the separable metric space $\mathfrak X$. Let $\mathscr G$ be a $\sigma$-subalgebra of $\mathscr F$. We find general conditions for the sequence $\{X_n,\,n=1,2,\dots\}$ to converge $\mathscr G$-stably; weakly, i. e. for the sequence $\{\mathbf E[\chi_Af(X_n)],\,n=1,2,\dots\}$ to converge for each $A\in\mathscr G$ and for each continuous bounded function $f$ on $\mathfrak X$. The cases of $\mathscr G$-stably weak convergence of semimartingales and point processes are investigated in detail.
@article{TVP_1983_28_2_a6,
     author = {B. I. Grigelionis and R. A. Mikulevi\v{c}ius},
     title = {On stably weak convergence of semimartingales and point processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {320--332},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/}
}
TY  - JOUR
AU  - B. I. Grigelionis
AU  - R. A. Mikulevičius
TI  - On stably weak convergence of semimartingales and point processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 320
EP  - 332
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/
LA  - ru
ID  - TVP_1983_28_2_a6
ER  - 
%0 Journal Article
%A B. I. Grigelionis
%A R. A. Mikulevičius
%T On stably weak convergence of semimartingales and point processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 320-332
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/
%G ru
%F TVP_1983_28_2_a6
B. I. Grigelionis; R. A. Mikulevičius. On stably weak convergence of semimartingales and point processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 320-332. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a6/