Weak and strong convergence of distributions of counting processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 288-319
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The theme of the article is the convergence of distributions of counting processes. The paper contains several theorems connecting the convergence of predictable characteristics (compensators) with the convergence of distributions. If the limit process has independent (or conditionally independent) increments, we use the method of «strochastic exponentials»; by means of this method we obtain an estimate of the rate of convergence
of finite-dimensional distributions to the corresponding distributions of the Poisson process. Techniques based on the compactness criterion in used to prove a weak convergence to a counting process with a (random) continuous compensator. We present also a criterion for the convergence in variation together with the estimates of the rate of convergence. As an illustration we investigate the strong convergence of conditionally Poisson processes with intensities depending on a Markov process. Another example is an estimate of the rate of convergence of counting processes connected with the empirical distribution functions to the Poisson process.
			
            
            
            
          
        
      @article{TVP_1983_28_2_a5,
     author = {Yu. M. Kabanov and R. \v{S}. Lipcer and A. N. \v{S}iryaev},
     title = {Weak and strong convergence of distributions of counting processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {288--319},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a5/}
}
                      
                      
                    TY - JOUR AU - Yu. M. Kabanov AU - R. Š. Lipcer AU - A. N. Širyaev TI - Weak and strong convergence of distributions of counting processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 288 EP - 319 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a5/ LA - ru ID - TVP_1983_28_2_a5 ER -
Yu. M. Kabanov; R. Š. Lipcer; A. N. Širyaev. Weak and strong convergence of distributions of counting processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 288-319. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a5/
