On the estimate of the rate of convergence with respect to the system of balls in the central limit theorem in $R^k$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 440-445
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain an estimate of the order $O(n^{-1/2)}$ for the rate of convergence with respect to the balls in the central limit theorem in $R^k$. The main part of the estimate does not depend on the dimensional parameter $k$. This estimate accounts the closeness of the distributions of summands to the normal distribution.
			
            
            
            
          
        
      @article{TVP_1983_28_2_a21,
     author = {V. V. Senatov},
     title = {On the estimate of the rate of convergence with respect to the system of balls in the central limit theorem in $R^k$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {440--445},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a21/}
}
                      
                      
                    TY - JOUR AU - V. V. Senatov TI - On the estimate of the rate of convergence with respect to the system of balls in the central limit theorem in $R^k$ JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 440 EP - 445 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a21/ LA - ru ID - TVP_1983_28_2_a21 ER -
%0 Journal Article %A V. V. Senatov %T On the estimate of the rate of convergence with respect to the system of balls in the central limit theorem in $R^k$ %J Teoriâ veroâtnostej i ee primeneniâ %D 1983 %P 440-445 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a21/ %G ru %F TVP_1983_28_2_a21
V. V. Senatov. On the estimate of the rate of convergence with respect to the system of balls in the central limit theorem in $R^k$. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 440-445. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a21/
