On the equivalence of Gaussian measures corresponding to the solutions of stochastic differential equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 429-433
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let Gaussian measures $P_1$ and $P_2$ correspond to the solutions of stochastic differential equations $\mathscr P_i\xi(t)=\xi^\ast(t)$, $i=1,2,\dots$ in bounded domain $T\subseteq R^d$, where $\mathscr P_1$ and $\mathscr P_2$ are some elliptic operators of order $2l$. It is shown that $P_1$ and $P_2$ are equivalent if $ 2l-q>d/2$ where $q$ is the order of $\mathscr P_2-\mathscr P_1$.
			
            
            
            
          
        
      @article{TVP_1983_28_2_a19,
     author = {S. D. Sokolova},
     title = {On the equivalence of {Gaussian} measures corresponding to the solutions of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {429--433},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a19/}
}
                      
                      
                    TY - JOUR AU - S. D. Sokolova TI - On the equivalence of Gaussian measures corresponding to the solutions of stochastic differential equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 429 EP - 433 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a19/ LA - ru ID - TVP_1983_28_2_a19 ER -
%0 Journal Article %A S. D. Sokolova %T On the equivalence of Gaussian measures corresponding to the solutions of stochastic differential equations %J Teoriâ veroâtnostej i ee primeneniâ %D 1983 %P 429-433 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a19/ %G ru %F TVP_1983_28_2_a19
S. D. Sokolova. On the equivalence of Gaussian measures corresponding to the solutions of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 429-433. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a19/
