Convergence of Bernoulli series and the set of sums of a conditionally convergent functional series
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 420-429
Cet article a éte moissonné depuis la source Math-Net.Ru
We survey a. s. convergence criteria for series $\sum a_k\varepsilon_k$ where $(\varepsilon_k)$ is a sequence of independent Bernoulli random variables, and $a1,a2,\dots$ are elements of a Banach space $X$. These criteria are applied to investigate the set $\mathfrak S_{(a_k)}$ of sums of a conditionally convergent series $\sum a_k$. The following problem is posed: does the a. s. convergence of $\sum a_k\varepsilon_k$ imply that $\mathfrak S_{(a_k)}$ is a shifted closed subspace of $X$. The answer is affirmative, if $X$ is of cotype $q$, $q<4$, and possesses the local unconditional structure.
@article{TVP_1983_28_2_a18,
author = {S. A. \v{C}obanjan},
title = {Convergence of {Bernoulli} series and the set of sums of a~conditionally convergent functional series},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {420--429},
year = {1983},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a18/}
}
TY - JOUR AU - S. A. Čobanjan TI - Convergence of Bernoulli series and the set of sums of a conditionally convergent functional series JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 420 EP - 429 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a18/ LA - ru ID - TVP_1983_28_2_a18 ER -
S. A. Čobanjan. Convergence of Bernoulli series and the set of sums of a conditionally convergent functional series. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 420-429. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a18/