On the efficiency of spectral density estimates for a~stationary process.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 388-397
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is the continuation of [1]. We present an asymptotical analysis and comparison of different statistics for spectral densities of stationary processes with finite sample length. The comparison of the mean square errors in done with respect to the local properties of a spectral density as well as to the strong jitters and noise in the neighbouring frequences. The paper provides also a new type of statistics which is nearly insensible to all sorts of interference.
@article{TVP_1983_28_2_a14,
author = {I. G. \v{Z}urbenko},
title = {On the efficiency of spectral density estimates for a~stationary {process.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {388--397},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a14/}
}
TY - JOUR AU - I. G. Žurbenko TI - On the efficiency of spectral density estimates for a~stationary process.~II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 388 EP - 397 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a14/ LA - ru ID - TVP_1983_28_2_a14 ER -
I. G. Žurbenko. On the efficiency of spectral density estimates for a~stationary process.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 388-397. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a14/