On Markov--Kolmogorov principle for stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 362-366

Voir la notice de l'article provenant de la source Math-Net.Ru

For stochastic functions $\xi$ described by the partial differential equations (1) in $T\subseteq R^d$ the following principle is considered: for every domain $S\subseteq T$ there exists a «state» $\xi_\Gamma$ defined by corresponding values on boundary $\Gamma=\partial S$ such that for a given $\xi_\Gamma$ one has an unique solution of (1) in $S$ and moreover a behaviour of $\xi$ in $S$ is conditionally independent on its behaviour outside of $S$.
@article{TVP_1983_28_2_a10,
     author = {Yu. A. Rozanov},
     title = {On {Markov--Kolmogorov} principle for stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {362--366},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/}
}
TY  - JOUR
AU  - Yu. A. Rozanov
TI  - On Markov--Kolmogorov principle for stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 362
EP  - 366
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/
LA  - ru
ID  - TVP_1983_28_2_a10
ER  - 
%0 Journal Article
%A Yu. A. Rozanov
%T On Markov--Kolmogorov principle for stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 362-366
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/
%G ru
%F TVP_1983_28_2_a10
Yu. A. Rozanov. On Markov--Kolmogorov principle for stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 362-366. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/