On Markov--Kolmogorov principle for stochastic differential equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 362-366
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For stochastic functions $\xi$ described by the partial differential equations (1) in $T\subseteq R^d$ the following principle is considered: for every domain $S\subseteq T$ there exists a «state» $\xi_\Gamma$ defined by corresponding values on boundary $\Gamma=\partial S$ such that for a given $\xi_\Gamma$ one has an unique solution of (1) in $S$ and moreover a behaviour of $\xi$ in $S$ is conditionally independent on its behaviour outside of $S$.
			
            
            
            
          
        
      @article{TVP_1983_28_2_a10,
     author = {Yu. A. Rozanov},
     title = {On {Markov--Kolmogorov} principle for stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {362--366},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/}
}
                      
                      
                    Yu. A. Rozanov. On Markov--Kolmogorov principle for stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 362-366. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a10/
