On an inequality and on the related characterization of the normal distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 209-218

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the conditions on the distribution of the random variable $\xi$ under which the inequality $$ \mathbf Dg(\xi)\le c\mathbf E(g'(\xi))^2 $$ holds for any differentiable function $g$. Some properties of the functional $$ U_\xi=\sup_g\frac{\mathbf Dg(\xi)}{\mathbf D\xi\mathbf E(g'(\xi))^2} $$ are investigated also. It is proved that $U_\xi\ge 1$ and that $U_\xi=1$ iff the random variable $\xi$ has the normal distribution. The theorem of continuity is true as well: if $U_{\xi_n}\to 1$ as $n\to\infty$, then the distributions of $\xi_n^{(1)}=(\xi_n-\mathbf E\xi_n)/\sqrt{D\xi_n}$ converge to the normal one.
@article{TVP_1983_28_2_a0,
     author = {A. A. Borovkov and S. A. Utev},
     title = {On an inequality and on the related characterization of the normal distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - S. A. Utev
TI  - On an inequality and on the related characterization of the normal distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 209
EP  - 218
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a0/
LA  - ru
ID  - TVP_1983_28_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A S. A. Utev
%T On an inequality and on the related characterization of the normal distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 209-218
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a0/
%G ru
%F TVP_1983_28_2_a0
A. A. Borovkov; S. A. Utev. On an inequality and on the related characterization of the normal distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/TVP_1983_28_2_a0/