Central limit theorem for the Banach-valued weakly dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 83-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a separable Banach space, $\xi_i$ – a stationary sequence of $B$-valued random variables with zero mean. In this paper we investigate some conditions on the character and rate of mixing under which the sequence $\xi_i$ satisfies the central limit theorem, i. e. the sequence $$ S_n=n^{-1/2}(\xi_1+\dots+\xi_n),\qquad n\to\infty, $$ converges weakly to some Gaussian $B$-valued variable.
@article{TVP_1983_28_1_a4,
     author = {V. A. Dmitrovskiǐ and S. V. Ermakov and E. I. Ostrovskiǐ},
     title = {Central limit theorem for the {Banach-valued} weakly dependent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a4/}
}
TY  - JOUR
AU  - V. A. Dmitrovskiǐ
AU  - S. V. Ermakov
AU  - E. I. Ostrovskiǐ
TI  - Central limit theorem for the Banach-valued weakly dependent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 83
EP  - 97
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a4/
LA  - ru
ID  - TVP_1983_28_1_a4
ER  - 
%0 Journal Article
%A V. A. Dmitrovskiǐ
%A S. V. Ermakov
%A E. I. Ostrovskiǐ
%T Central limit theorem for the Banach-valued weakly dependent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 83-97
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a4/
%G ru
%F TVP_1983_28_1_a4
V. A. Dmitrovskiǐ; S. V. Ermakov; E. I. Ostrovskiǐ. Central limit theorem for the Banach-valued weakly dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 83-97. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a4/