Semi-Markov decision-making processes with vector gains
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 182-184
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main problem in the theory of semi-Markov decision-making processes is the development of methods which give the optimal strategy if such a strategy exists. The paper discusses those semi-Markov decision-making processes in which the structure of gains is a vector one and solve the vector analog of the basic scalar problem. Geometric conditions leading to the optimal strategy in the explicit form are given.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a15,
     author = {{\CYRT}. {\CYRM}. Vinogradskaja and {\CYRV}. A. Geninson and A. A. Rub\v{c}inskiǐ},
     title = {Semi-Markov decision-making processes with vector gains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {182--184},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/}
}
                      
                      
                    TY - JOUR AU - Т. М. Vinogradskaja AU - В. A. Geninson AU - A. A. Rubčinskiǐ TI - Semi-Markov decision-making processes with vector gains JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 182 EP - 184 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/ LA - ru ID - TVP_1983_28_1_a15 ER -
Т. М. Vinogradskaja; В. A. Geninson; A. A. Rubčinskiǐ. Semi-Markov decision-making processes with vector gains. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 182-184. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/
