Semi-Markov decision-making processes with vector gains
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 182-184

Voir la notice de l'article provenant de la source Math-Net.Ru

The main problem in the theory of semi-Markov decision-making processes is the development of methods which give the optimal strategy if such a strategy exists. The paper discusses those semi-Markov decision-making processes in which the structure of gains is a vector one and solve the vector analog of the basic scalar problem. Geometric conditions leading to the optimal strategy in the explicit form are given.
@article{TVP_1983_28_1_a15,
     author = {{\CYRT}. {\CYRM}. Vinogradskaja and {\CYRV}. A. Geninson and A. A. Rub\v{c}inskiǐ},
     title = {Semi-Markov decision-making processes with vector gains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {182--184},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/}
}
TY  - JOUR
AU  - Т. М. Vinogradskaja
AU  - В. A. Geninson
AU  - A. A. Rubčinskiǐ
TI  - Semi-Markov decision-making processes with vector gains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 182
EP  - 184
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/
LA  - ru
ID  - TVP_1983_28_1_a15
ER  - 
%0 Journal Article
%A Т. М. Vinogradskaja
%A В. A. Geninson
%A A. A. Rubčinskiǐ
%T Semi-Markov decision-making processes with vector gains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 182-184
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/
%G ru
%F TVP_1983_28_1_a15
Т. М. Vinogradskaja; В. A. Geninson; A. A. Rubčinskiǐ. Semi-Markov decision-making processes with vector gains. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 182-184. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a15/