$\varepsilon$-independence of the sample mean and the tubular statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 157-163

Voir la notice de l'article provenant de la source Math-Net.Ru

The normal law is characterized by the independence of the sample mean and the tubular statistics. We estimate the stability in this characterization problem.
@article{TVP_1983_28_1_a11,
     author = {L. B. Klebanov and R. V. Yanu\v{s}kjavi\v{c}us},
     title = {$\varepsilon$-independence of the sample mean and the tubular statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/}
}
TY  - JOUR
AU  - L. B. Klebanov
AU  - R. V. Yanuškjavičus
TI  - $\varepsilon$-independence of the sample mean and the tubular statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 157
EP  - 163
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/
LA  - ru
ID  - TVP_1983_28_1_a11
ER  - 
%0 Journal Article
%A L. B. Klebanov
%A R. V. Yanuškjavičus
%T $\varepsilon$-independence of the sample mean and the tubular statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 157-163
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/
%G ru
%F TVP_1983_28_1_a11
L. B. Klebanov; R. V. Yanuškjavičus. $\varepsilon$-independence of the sample mean and the tubular statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 157-163. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/