$\varepsilon$-independence of the sample mean and the tubular statistics
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 157-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The normal law is characterized by the independence of the sample mean and the tubular statistics. We estimate the stability in this characterization problem.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a11,
     author = {L. B. Klebanov and R. V. Yanu\v{s}kjavi\v{c}us},
     title = {$\varepsilon$-independence of the sample mean and the tubular statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/}
}
                      
                      
                    TY - JOUR AU - L. B. Klebanov AU - R. V. Yanuškjavičus TI - $\varepsilon$-independence of the sample mean and the tubular statistics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 157 EP - 163 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/ LA - ru ID - TVP_1983_28_1_a11 ER -
L. B. Klebanov; R. V. Yanuškjavičus. $\varepsilon$-independence of the sample mean and the tubular statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 157-163. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a11/
