Local additive functionals of Gaussian random fields
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 32-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Local additive functional $\Xi$ is a random finite-additive measure whose value on the
parallelepiped $V\subset R^\nu$ belongs to the $\sigma$-algebra $\mathfrak B_V$ generated by the values of generalized Gaussian random field $\zeta=\{\zeta(\varphi),\varphi\in\mathfrak Y(R^\nu)\}$ on $V$. This functional are described in terms of their representation as multiple stochastic Wiener–Ito integrals.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a1,
     author = {R. L. Dobru\v{s}in and M. Ya. Kel'bert},
     title = {Local additive functionals of {Gaussian} random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a1/}
}
                      
                      
                    R. L. Dobrušin; M. Ya. Kel'bert. Local additive functionals of Gaussian random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a1/
