On the invariance principle for semimartingales with > assumptions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 3-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that $X^n$, $n\ge 1$, is a family of semimartingales with triplets of local characteristics 
$(B^n,\langle X^{nc}\rangle,\nu^n)$ and let $M$ be a Gaussian martingale. We find conditions (theorem 2) which are sufficient for the weak convergence $X^n$ to $M$.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a0,
     author = {R. \v{S}. Lipcer and A. N. \v{S}iryaev},
     title = {On the invariance principle for semimartingales with <<nonclassical>> assumptions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--31},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a0/}
}
                      
                      
                    TY - JOUR AU - R. Š. Lipcer AU - A. N. Širyaev TI - On the invariance principle for semimartingales with <> assumptions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 3 EP - 31 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a0/ LA - ru ID - TVP_1983_28_1_a0 ER -
R. Š. Lipcer; A. N. Širyaev. On the invariance principle for semimartingales with <> assumptions. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 3-31. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a0/ 
