On the distributions of some statistical estimates of spectral density
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 739-756
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X_t$, $t=\dots,-1,0,1,\dots$, be a real Gaussian stationary time series with zero mean and spectral density $f(\lambda)$, $-\pi\le\lambda\le\pi$. In the paper the distribution of estimates (0.1) is considered, where $J_N(x)$ is the periodogram and $W\in L_1(-\pi,\pi)$. The asymptotic expansions of the distribution function and density of r. v. (0.5) are given and the theorem on large deviations is proved. Comparatively exact inequalities for the probabilities $$ \mathbf P\{|\widehat f(\lambda)-\mathbf E\widehat f(\lambda)|\ge x\},\qquad \mathbf P\{\|\widehat f-\mathbf E\widehat f\|_2\ge x\},\qquad \mathbf P\{\|\widehat f-\mathbf E\widehat f\|_\infty\ge x\} $$ are derived. It is proved also that for some of the estimates (0.1) the inequalities (3.2)–(3.4) hold for all $a>0$.
@article{TVP_1982_27_4_a8,
author = {R. Yu. Bentkus and R. A. Rudzkis},
title = {On the distributions of some statistical estimates of spectral density},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {739--756},
year = {1982},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a8/}
}
R. Yu. Bentkus; R. A. Rudzkis. On the distributions of some statistical estimates of spectral density. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 739-756. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a8/