On a decomposition of the Poisson distribution on groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 725-738
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a locally compact abelian group $X=R^n\times G$, where $G$ contains a compact open subgroup $K$, $F$ is a finite measure on $X$ and $$ e(F)=\operatorname{exp}\{-F(X)\}\sum_{k=0}^\infty F^{\ast k}/k! $$ is a generalized Poisson distribution. Theorem 1. {\it If $F(X)<1/2\ln 2$ and the measures $F^{\ast m}$ and $F^{\ast k}$ are mutually singular for any different integers $m$ and $k$ then $e(F)$ has no indecomposable divisors.} Theorem 2. An absolutely continuous measure $F$ on $X$ such that $e(F)$ has no indecomposable divisors exists if and only if one of the following conditions is satisfied: ($\alpha$) $n=0$ and factor-group $G/K$ contains an element of infinite order, ($\beta$) $n>0$.
@article{TVP_1982_27_4_a7,
author = {G. M. Fel'dman},
title = {On a~decomposition of the {Poisson} distribution on groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {725--738},
year = {1982},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a7/}
}
G. M. Fel'dman. On a decomposition of the Poisson distribution on groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 725-738. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a7/