Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 684-692
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n$ groups of particles ($i^{th}$ group contains $s_i$ particles) are placed independently into $N$ cells so that each cell contains at most one particle of each group and all $C_N^{s_i}$ possible dispositions of particles of $i^{th}$ group are equiprobable. In this paper Poisson and normal limit theorems for the number of empty cells are obtained. In all cases the estimates of the rate of convergence to the limit distributions are given. These results complete and generalize some known theorems (see [1]–[7]).
@article{TVP_1982_27_4_a4,
author = {V. A. Vatutin and V. G. Mihaǐlov},
title = {Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {684--692},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a4/}
}
TY - JOUR AU - V. A. Vatutin AU - V. G. Mihaǐlov TI - Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 684 EP - 692 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a4/ LA - ru ID - TVP_1982_27_4_a4 ER -
%0 Journal Article %A V. A. Vatutin %A V. G. Mihaǐlov %T Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 684-692 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a4/ %G ru %F TVP_1982_27_4_a4
V. A. Vatutin; V. G. Mihaǐlov. Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 684-692. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a4/