The estimate of the distribution of noise in autoregressive scheme
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 805-810
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $u_j=\beta_1u_{j-1}+\dots+\beta_qu_{j-q}+\varepsilon_j$ ($j=1,\dots,n$) аге $n$ observations of autoregressive scheme, where $\beta_1,\dots,\beta_q$ are unknown nonrandom parameters and $\varepsilon_j$ are independent identically distributed random variables with zero mean, finite variance and unknown distribution function $G(x)$. The estimate $\widehat G_n(x)$ of $G(x)$ is considered. It is proved that $\sqrt n[\widehat G_n(G^{-1}(t))-t]$ converges weakly to the Brownian bridge when $u\to\infty$. The result is used in the testing of the hypotheses on $G(x)$.
@article{TVP_1982_27_4_a18,
author = {M. V. Boldin},
title = {The estimate of the distribution of noise in autoregressive scheme},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {805--810},
year = {1982},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a18/}
}
M. V. Boldin. The estimate of the distribution of noise in autoregressive scheme. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 805-810. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a18/