On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 784-787 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove some uniqueness theorems for functions $F(x)$ of bounded variation (and for distribution functions) with given values on a halfline. The uniqueness is proved for functions belonging to the classes of functions $F(x)$ such that the characteristic function $$ \varphi(t;F)=\int_{-\infty}^\infty e^{itx}\,dF(x) $$ is analytic in the strip $0<\operatorname{Im}t, $\varphi(t;F)\ne 0$ ($0<\operatorname{Im}t) and $\varphi(t;F)$ grows rather quickly when $\operatorname{Im}t\uparrow H$.
@article{TVP_1982_27_4_a13,
     author = {N. M. Blank},
     title = {On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {784--787},
     year = {1982},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/}
}
TY  - JOUR
AU  - N. M. Blank
TI  - On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 784
EP  - 787
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/
LA  - ru
ID  - TVP_1982_27_4_a13
ER  - 
%0 Journal Article
%A N. M. Blank
%T On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 784-787
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/
%G ru
%F TVP_1982_27_4_a13
N. M. Blank. On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 784-787. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/