On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 784-787
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove some uniqueness theorems for functions $F(x)$ of bounded variation (and for distribution functions) with given values on a halfline. The uniqueness is proved for functions belonging to the classes of functions $F(x)$ such that the characteristic function $$ \varphi(t;F)=\int_{-\infty}^\infty e^{itx}\,dF(x) $$ is analytic in the strip $0<\operatorname{Im}t, $\varphi(t;F)\ne 0$ ($0<\operatorname{Im}t) and $\varphi(t;F)$ grows rather quickly when $\operatorname{Im}t\uparrow H$.
@article{TVP_1982_27_4_a13,
author = {N. M. Blank},
title = {On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {784--787},
year = {1982},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/}
}
TY - JOUR AU - N. M. Blank TI - On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1982 SP - 784 EP - 787 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/ LA - ru ID - TVP_1982_27_4_a13 ER -
%0 Journal Article %A N. M. Blank %T On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline %J Teoriâ veroâtnostej i ee primeneniâ %D 1982 %P 784-787 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/ %G ru %F TVP_1982_27_4_a13
N. M. Blank. On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 4, pp. 784-787. http://geodesic.mathdoc.fr/item/TVP_1982_27_4_a13/